2018 International Conference on Computational Science and Engineering (ICCSE 2018)

Existence of Solutions for Three-order M-point Boundary Value Problems at
Resonance

Xiaogang Liu, Zhen Wang, Xiaojian Xi, Peijun Zhang
Science of school, Xijing University, Xi'an, Shaanxi, 710123

Keywords: m-point boundary value problems; resonance; the theory of coincidence degree

Abstract: In this note, the theory of coincidence degree is used to study the existence of solutions
for Three-order m-point boundary value problems at resonance. Under the condition of KerL=3,
some relevant results in the literature are improved.

1. Introduction

In recent years, the multi-point boundary value problem of differential equations has been
extensively and deeply studied, and some results have been obtained [1-4]. However, most of the
existing research methods focus on the principle of compression mapping and the fixed point
theorem. The theory of coincidence degree studies the boundary value problem, especially in the
case of resonance, the results of studying the non-local boundary value problem are few. Therefore,
based on the above literature, this paper mainly studies the following three types of third-order
ordinary differential equation m-point boundary value Resonance problem:

x"=f(t,x(t), x'(t),x"(t)) +e(t), te[0,1],

x(0)=0, x'(1)= i ax'(e), x@ :j' A(t)x(t)dt,

Where, O0<g <¢,<---<¢,<La, eR,i=L2,---meec L1[0,1],Z:ai =Z:aigi =1,
i=1 i=1

f(t,x,y,2):[0,1]x R®* — R meets Caratheodory.

2. Background

In this paper X,Z is Banachz one, L:N(L)c X = Z zero-index Fredholm operators,
P:X =X : Q Z—>1 is the projection operator,
ImP =KerL,KerQ=ImL | P:X —>X , Q: Z—Z Is a projection operator, making
ImP =KerL,KerQ=ImL

X =KerL@®KerP, X =ImL@®ImQ, L|, 4, (JIKm -elLin Reversible,

AKm e Lr P

Its inverse mapping is K, ,if QisX Bounded open subset, d o M=0,,if QN(Q) has
boundary, K (I -Q)N Q- X TightthenN : X - Y Qis Ltight.
C[0.1],C2[0,1], L[0,1] Is the

1

norm x|, = max{x:x(©),t < [0,11}. [ =[], +[x'], + [, [, = [Ix(s)|ds  Banach  space. This

0
article also uses Soloblev space W*4(0,1) = {x:[0,1] > R|x, x',x" & AC[0,1], X" & L'[0,1]}.

The main tool of this paper is the following theory of coincidence degree.
Theorem A [5] L is the Fredholm operator with zero index, and is L-tight, assuming the
following conditions are true:

(1) Lx # ANx, (x,A4) € [(domL\ KerL) N 6Q]x(0,1) ;
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(2)NxgImL,xe KerLNoQ;

(3)deg {JQN, 62 KerL,0} # 0,where Q:Z —Z s a projection calculation, making
ImL=KerQ,J:ImQ — KerL;

Operator equation Lx=N> dom(lQ.

Note 2.1 This paper assumes that the following conditions are true.

(Cl):j.tA(t)dt = jtzA(t)dt =1;

mll m12

(C2):M= 0.

21 m 22

m = 2(1_zaigi3)v m 12:1_Zaigi4’
i1 =)

m = 5(1—jt4A(t)dt), m ,,= 2(1—jt5A(t)dt).

3. Conclusion

X =C?[0,1],Z = L'[0,1], Define linear operator L to satisfy D(L) = X — Z, Where

D(L) = {x eW?(0,1):x(0) =0, x'(1) = _Zm:aix'(gi),jA(t)x(t)dt}

Lx =x",x e D(L).
Defining nonlinear operators N : X — Z, Nx(t) = f (t, x(t), x'(t), x"(t)) +e(t), t €[0,1],

Then the ordinary boundary equation resonance boundary value problem (1.1)-(1.2) is equivalent
to the operator equation

Lemma 3.1 If the assumption is true, then the operator of the zero indicator.
Defining projection operator

Qy = (TyO)t+ Ty )", 1)

12 60
Where: T,y(t) = V(M11Q1y+ M,Q,Y), T,y(t) =V(M21Q1y+ M,,Q,Y),

Qy=]A-9yE)ds - [ -9y

Qy = [ (L-3)y(s)ds— [ A()[ (t—5)* y(s)dslt,

Mn =My, M12 =—M,, M21 =—-My, Mzz =my,.
Kerl={xe D(L): x(t) =at+hbt*,a,b e R}.
ImL={yeZ:Qy=Q,y=0}.

t
yeZ,x(t):%j(t—s)zy(s)dsmo+clt+c2t2,co,cl,c2 eR,
0

[a-9)y(s)ds=Y" [ (5, ~5)y(s)ds =0 @

i=1l o
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Jl-(l— 5)*y(s)ds - j A(t)j (t-s)*y(s)dsdt =0,

At the same time, it satisfies (1.2), so
1 t
xedomL, x"elm(L) x(t) :Ej(t—s)2 y(s)ds +c, +ct+c,t’,c,,C,C, R,
0

The conditional substitution expression can be satisfied by (2) and (3). Therefore
ImL={yeZ:Qy=Q,y=0},
Construct a continuous linear map using the above definition T,(i=12):Z - Z,

12
le(t) = V(Many + MquY)’

60
Tz y(t) = V (M 21Q1y +M zzQz Y)’

Defining continuous linear operators Q:Z — Z,

Qy = (Ty(®)t + (Tyt)t?,
T.((Ty)t) = ll\A—Z[MllQl((le)t) +M_,Q, ((Tyy))]

12 1 m 1 u
=V[Mllg(l_§aigi3) +M,, E(l_;ai8i4)](-r1y)

[M112(1_Zm:ai3i3) +M,, (1_Zm:ai5i4)]

v = (Ty)
T
= ( '\1/Iy) Mym, +M,m,,]
=LY,

Tl((Tz y)tz) =0, Tz ((le)t) =0, Tz ((sz)tz) :Tz y.

Then Q°y =Q(Qy) = T,I(T,y ()t + (T,yO)° It + Ty (E)t + (T,y ()]’

= (TyE)t+ Ty’ =Qy,

Q is an idempotent operator. So Q is a linear projection operator.

If Qy=0,

{MllQl(y) +M,Q,(y) =0,
M 21Q1(Y) +M 22Q2(y) =0.

Mll M12 M

m21 m22 M 21 M 22 ) ‘

Then Qy=Q,y=0.

KerL=1Im(Q), Z =Im(Q)® Ker(Q),thenZ =ImL® ImQ.

dimKerL=codimimL=3, L:d o/[)1¥— 4. Is a zero indicator operator Fredholm .
P:X > X,

mll m12 M 11 M 12

For = 0.

0 =M2%0,th
o M| - then

21 22

PX(t) = X(0) + x'(O)t +%x"(0)t2,t c[0],

Evidence P is a continuous projection operator, and KerP = {x:x(0) = x'(0) = x"(0) = 0},
X = KerL @ KerP.
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1 t
Redefinition operator K,:1 h—d of1Kn ,(pr)(t)=§I(t—5)2y(3)d5-
0

For yelmL, (LK;)y(t)=(Kpy)"=y(b).
for x e dom(L) " KerP,

(KoL)X(t) = %j'(t —s)°x"(s)ds

= X(t) — (x(0) + x'(0)t +%X "(0)t%) = x(t),

For (K,L)X(t) =x(t). This proves that K, = (L], ree)
and [Key[, <[yl (Ko, <[yl (Ko, <]y
So [Key[[=[IKey, +[I(Key)], +(Key) T, <3]Y],-
Lemma3.2 K,(I-Q)N:X — X Full continuous.

The proof of this lemma is similar to [5], which is omitted here. Theorem 3.1 assumes that the
function f :[0,1]x R® — R satisfies the Caratheodory condition, and

(H1) is for random (x, y, z) € R*and allt €[0,1] ,has a functiona(t), b(t), c(t), d (t), m(t),
n(t) e L[0,1] and parameter &,9<€[0,1]] ,Make one of the following inequalities
true. L(t) = a(t) + b(t) x|+ c(t)|y|+d )|z,

@t xy, 2)| < L@ +m@)|y] +n(®)|2]", (4)
1@t xy, 2)| < L@ +m@)|z]” +n@)|y|"- (5)

(H2) has a parameter A>0, Make it all t<[0,1],x e domL\KerL,
I |x|+[x]+[x"|> A,s0Q,Nx#0,o0rQ,Nx 0.
(H3) has a parameter B > 0 ,and make randoma,b € R |if a®+b® > B, so

aT,N(at+bt*)+bT,N(at +bt*) > 0, (6)
aT,N(at+bt*)+bT,N(at +bt*) < 0. (7)

||b||1+||c||1+||d||l<%, then the resonance boundary value problem (1.1)-(1.2) has at least one

solution.
Proof: (1) OrderQ, = {x e dom(L)\KerL: Lx = ANx, 4 €[0,1]},

XeQ, x¢KerL thenLx=ANx,4#0, NxelmL=KerQ,
QNx=0, QNx=QNx=0. (H2), t,[0,1],

X(to)|+ X @) +[x"t)| < A X"(t) = x"(to)+'|.x"'(s)ds,

f

X'(t)=x'(t,)+ j x"(s)ds,

X(t) = x(t,) + j x'(s)ds.

SO
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@ =[x '@, <[x"C)|+[x"®O, <[x"C)|+[Lx], < A+[Nx],, ®)
O < [x @, =[x )] +[x"C)|+[x"O, < A+Lx], < A+[Nx (9

@) <X, <[x(t)]+[x )] +[x )|+ [x"O), < A+|Lx], < A+[Nx],. (10)

Available in (8), (9), (10)|Px||=|x(0)+ x'(0)t+%x"(0)t2

x(0) + x'(0)t + % x"(0)t?

+[x'(0) + x"(O)t| +|x"(0)[,
<[x@[, +2[x ], +3[x"©],
<6A+6|Nx|,. (11)
xeQ,, (I -P)xedomL(KerL, LPx = 0.then
I(1 = P)X|| =Ko L(1 = P)x| < 3| L(I = P)x], < 3|Lx|, < 3||Nx],. (12)
Comprehensive (11), (12) can be obtained
X[ =[|Px+ (1 = P)x|| < [Px] + (Y = P)x| < 6A+9| Nx],. (13)
If (4) is established, it is available from (13)
[ < dlall + 00 X + el 1. + 1l L, =+ Il 1+l "1 +[ell)+ 6 (14)

Calculated by calculation:

9l + el . + 1 [+l e+l [ +[elly+6A

nfx. < ofp| (15)
1
e, < 2 ALY + b ey + Q. +6) 5)
’ 1-9]o], ~9cl;
< 0l +ml, [ +[e)+ ©lnl, [x ] +64) )

[x1. < 1-9[b, -9[c], - 9[d],

0,9 <[0,1] ||b||1+||c||1+||d||1<% When established, there are constants at the same time

M;,M,,M; >0, Makeitall xeQ, [x"| <My[x], <M, |x|, <M,

Available from (14)- (A7) |X| =X +|x ], +[x"[, <M, + M, +M,.

Therefore, it is bounded under the conditions of (4). If (5) is established, the same reason can be
bounded.

(2) OrderQZZ{X e KerL:NxelIm L}

XeQ,, Xe KerL:{x|x:at+bt2,a,be R},

NxelmLand ImL=KerQ, OQONx=0, T,Nx(t)=T,Nx(t)=0.

so(H3) a?+b?<B,s0 Q, hasaboundary

(3) Assumption (6) holds. Define linear isomorphic mapping J : KerL — ImQ,

J(at +bt?) :Ilvl—z(aMn +bM,,)t +%(al\/l 21 +OM )%,
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Q,={x e KerL: AJx+(1-1)QNx =0, €[0,1]}
For random x =at +bt’ € Q, so AIx+(1—A)QNx =0 then

12M,, [Aa+(1-A)T,N(at+bt?)] +12Mﬂ[/1b+ (1-A)T,N(at+bt*)]=0,

%[zm (1- )T,N(at + btz)]+%[/1b+ (1- A)T,N (at +bt2)] = 0.

G M,,[Aa+(1—A)T,N(at +bt*)]+ M, [1b + (1— A)T,N (at +bt*)] =0,
'S M, [Aa+(1-A)T,N(at +bt*)]+ M ,[Ab+ (1— A)T,N (at + bt*)] = 0.

M, M, /1a+(1—/1)T1N(at+bt2):O,
Because )

M, M, Ab+(1- 2)T,N(at +bt?) = 0.
ifA=1, a=b=0.

if 2 €[0,1) then A(a* +b*) = —(1— A)[aT,N(at + bt*) +bT,N (at + bt*)] <0,

A(@® +b*)>0,then Q, has its boundary.

If (7) is established, ;= {x € KerL:-AJx+(1-2)QNx=0,2€[0,1]} Q,has its boundary
(4) Take the bounded set Q:Q, cQ:

1) Lx # ANX, (X, 4) € [(domL \ KerL) (M oQ]x(0,1) ;

2)NxgImL,xeKerLNoQ;

The formula (3) of the testimony theorem A is established.
Construct a homotopy equation: H(x, 1) = £4Jx+ (1—-2)QNX, Known by the same nature:

deg(H (QN|,_, . KerLNQ,0) =deg(H (-,0), KerLNQ,0)
=deg(H (1), KerLN €2, (0,0)) =deg(+1, KerLN <, (0,0))
12M,,  12M,,
M M
60M,, 60M,,
M M

=sgn(+

)

M M
= sgn(J_rYZO‘ R

MZl M21

#0.

Therefore, if the condition (3) of the theorem A holds, then the operator equation has at least one
solution.

Therefore, it can be seen that the resonance boundary value problem (1.1)-(1.2) has at least one
solution.

Theorem 3.2 The hypothesis function satisfies the Caratheodory condition, satisfies the sum of
theorem 3.1, and has the following decomposition: f (t,x,y,z)=g(t,x,y,z)+h(t, X, y, z);

(H4) for arandom (t,x,y,z) €[0,1]xR®, z[g(t,X,y,2)+€]<0;

(H5) a,b,c,d,m,n, p e L'[0,1],it makesfor a random (X, y, z) € R® ,parameter 6,, 6,,

6, €[0,1] it makes

Ih(t, x, y,2)| < a(t) +b(@) x|+ c)|y|+ d )|z + m|x|* +n|y|* + p|z*;

if the function f (t,X,y,z) The above conditions are satisfied, and at least one solution exists for
the resonance boundary value problem (1.1)-(1.2).

To prove:(1) €, = {X edom(L)\ KerL:Lx=ANx,A e [O,l]}

for arandomx e €, x ¢ KerL ,thenLx = ANx,A#0, NxelmL =KerQ,
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soQNx=0, QNx=QNx=0. (H2), t, €[0,1],it makes
[X(ty)] + X ()| +]x"(t,) < A
Furthermore, the nature of the differential is known:

X'(t) = X'(t) + [ X"(s)ds, (18)
X(®) = x(t;) + [ x'(s)ds. (19)
then:
= x|+ X < A+ X (20)
X XD + x|+ X < A+ (21)

X"(0)x" (1) = AX"OL F (¢, x(1), X (©), X"(©)) + ()]

Integrate both sides at the same time, there is
1 2

_ XII t

2( (t)

= %(x "(to))2 + ij. X"(s)[a(s, x(s), x'(s), x"(s)) +e(s)|ds + ij X"(s)[h(s, x(s), x'(s), x"(s)) +e(s)]ds

<A Tesings, s (9076 (s s

2

A . .. . ..
<+ et tal, + 1Bl I+ lell bt + Rl e, -+l I+ Il 1 + el s + e

A% . . .
< =[xl Qi+ lll, A= [l "1, +lell, A+ el [x”[. + [l 1.

+ml il e + Dl I + el

A’ "
<=+ (LTl + e, +{dl,]

+[x°[, Tlal, + o], A+[c], A+=+[ml,|x
Then

ol e

241l + el

2

n 1 n 1||v2 (3 A
(x1.0° 6 = lpl, = lel, =il < "1, tal, +[lol, A-+{el, A=, [+ Inl, I +[p L +lelld+=-

.. A
=+ Il + el 1+

[ el + o, A-+ el Al I+ ],
1
5 ~lIolk =i, =[a,

For 6,6, 6, €[0.and]o], +|c], +|d], <, parameter

(I

parameter M, > 0 it makes x|, <M,.
(20),(21)can get ||X||w < A+M,, |Oo < A+M,.
so[[x][ = [x]., + [, +[x"[.. <2A+3Mm,.

X

so €, It is bounded. The remaining proof is exactly the same as the proof in the second half of
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Theorem 3.1, which is omitted here.
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